
Forgetful Large Language Models:
Lessons Learned from Using LLMs

in Robot Programming

Chien-Ming Huang

Intuitive Computing Laboratory
Department of Computer Science

Juo-Tung Chen

Overview

• Common errors in LLM-generated code for robot programming

• Proposal of prompt engineering strategies to reduce execution errors

• Demonstration of tactics' effectiveness with ChatGPT, Bard, and LLaMA-2

• Key takeaways and lessons learned from using LLMs in robot programming

Robot Application Development paradigms

Time consuming,
requires expertise

Lower barriers
Still requires programming specifications

Natural language (prompt)
Collaborative interaction

Ajaykumar, Gopika, Maureen Steele, and Chien-Ming Huang. "A survey on end-user robot programming." ACM Computing Surveys (CSUR) 54.8 (2021): 1-36.

Traditional RAD End-user RAD AI-Aided RAD

Vemprala, Sai, et al. "Chatgpt for robotics: Design principles and model abilities." Microsoft Auton. Syst. Robot. Res 2 (2023): 20.

Liang, Jacky, et al. "Code as policies: Language model programs for embodied control." 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.

1. Exploration vs. Resolution

Key Differences from Existing Research

2. Identifying Errors

3. Mitigation Strategies 4. Sharing Lessons

Chen, Mark, et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

The stochastic nature of LLMs, which
purposefully introduce randomness to
increase response diversity, can pose a

significant challenge in robot programming
where correctness often hinges on

finding a specific, rare solution

1. What are the common errors generated
by LLMs in robot programming?

2. How can we develop practical strategies
to reduce these errors?

Research Questions

Experiment 1: Identify Common Errors

Sequential Manipulation Task

Baseline Prompt

Develop a standard prompt to assess LLM-generated errors

System

Description of API library

Solution Example

Objective

(Please refer to our appendix to see the full baseline prompt)

You are an assistant helping me with the UR5 robot arm. This is a 6 degrees of
freedom robot manipulator that has a gripper as its end effector. The gripper is
in the open position in the beginning. When I ask you to do something, you are
supposed to give me Python code that is needed to achieve the task using the
UR5 robot arm and then an explanation of what that code does. You are only
allowed to use the functions I have defined for you. You are not to use any other
hypothetical functions that you think might exist. You can use simple Python
functions from libraries such as math and numpy.
…

In the environment, the following items might be present:
beaker 1L: radius = 6.5 cm and height = 15 cm ,
beaker 500mL: radius = 5.5 cm and height = 12 cm,
beaker 250mL: radius = 4.75 cm and height = 10 cm,
…
Use the dimensions provided above when I don’t specifically tell you
the dimensions of the objects.

System

Description of API library

Solution Example

Objective

Baseline Prompt

Develop a standard prompt to assess LLM-generated errors

(Please refer to our appendix to see the full baseline prompt)

At any point, you have access to the following functions, which are accessible
after initializing a function library. You are not to use any hypothetical
functions. All units are in the SI system.
lib=FunctionLib(): Initializes all functions; access any of the following
functions by using lib.
move_to_home_position(): Moves the robot to a neutral home position
go(x,y,z,roll,pitch,yaw): Moves the robot arm to the x, y, z position in meters,
and roll, pitch, yaw in degrees with respect to the base frame of the robot.
pour(target_container_name): The robot will go to near the target
container and rotate its wrist to pour the contents inside the object that is
grasped by the gripper into the target container.
…

A few useful things: Always start your code by importing FunctionLib
and also make sure to always init a node with rospy. If you are uncertain
about something, you can ask me a clarification question, as long as you
specifically identify it by saying “Question”
…

System

Description of API library

Solution Example

Objective

Baseline Prompt

Develop a standard prompt to assess LLM-generated errors

(Please refer to our appendix to see the full baseline prompt)

The following is an example of writing the code. If the user asked, “There is
a 100mL graduated cylinder on Marker 6 and a 1L beaker on Marker 9. Pick
up the graduated cylinder and pour its contents into the beaker. After pouring,
place the graduated cylinder at Marker 5,” then you should write a code like the
following:

from Lib.ur5.FunctionLibrary import FunctionLib
import rospy

Initialize rospy node called gpt
rospy.init_node(`gpt')

Initialize function library
lib = FunctionLib()

Move the robot back to home position
lib.move_to_home_position()
rospy.sleep(2)
…

System

Description of API library

Solution Example

Objective

Baseline Prompt

Develop a standard prompt to assess LLM-generated errors

Please write a Python function to pick up a 25mL graduated cylinder at
Marker 15 and pour its contents into a 500mL beaker at Marker 7.
After that, put the cylinder back to where it was.

LLaMA-2
(13B parameters)

GPT-3.5
(154B parameters)

Bard
(137B parameters)

Language Models

Workflow and the emergence of potential errors

Workflow and the emergence of potential errors

Workflow and the emergence of potential errors

Workflow and the emergence of potential errors

Workflow and the emergence of potential errors

Errors in interpretation
Name Error: Syntax Error:

Import Error: ROS Error:

Can be rectified using code verifications

Factual Error: Physical Error:

LLM being “forgetful”

Errors in Execution

Experiment 2: Exploring Practical Strategies
to Reduce Errors in Execution

Strategies:

Experiment 2

implement dedicated functions for retrieving numerical data
(reduce Factual Error)

1. Prompts involve task/context information specified in numerical form

Strategies:

Experiment 2

reinforce key constraints in the objective prompt (reduce Physical Error)

2. Intricate functions (like the pour function in our experiment)

reinforce constraints (orange), articulate the physical implications (blue)

Results

Before applying the strategies

Model Factual Error (%) Physical Error (%) Import Error (%) ROS Error (%) Name Error (%)

GPT 3.5 100 90 40 40 0

Bard 100 100 0 0 0

LLaMA-2 90 90 0 0 10

• Increased task completion rates.

• Reduced factual and physical errors.

After applying the strategies

Results

Model Factual Error (%) Physical Error (%) Import Error (%) ROS Error (%) Name Error (%) Completion (%) Reduction in Errors
in Execution (%)

GPT 3.5 10 0 40 40 30 60 94.7

Bard 10 0 0 0 10 70 95

LLaMA-2 0 30 0 0 60 40 83.3

Lessons Learned

Ø Inconsistency in LLM-Based Code Generation

Importance of user involvement and descriptive prompting

Importance of reinforcing constraints in objective prompt

Ø Forgetful LLM can result in errors in execution

Suite of Tools for Productive LLM-Based Robot Programming
Ø Verification script or feedback loop (errors in interpretation)

Ø Data-retrieving function + reinforce constraints in objective prompt (errors in execution)

Ø Simulation preview tools before deployment

Chien-Ming Huang
cmhuang@cs.jhu.edu

Juo-Tung Chen
jchen396@jhu.edu

Forgetful Large Language Models:
Lessons Learned from Using LLMs

in Robot Programming

